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Supplementary Figure 1: Comparison of the performance of affinity propagation (AP),
MCL, RRW and ClusterONE on weighted and unweighted versions of the same input
dataset, using the MIPS gold standard. The (nw) suffix after the name of the algorithm
denotes the unweighted variant. Overlapping algorithms are marked by an asterisk (*)
below their columns.
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Supplementary Figure 2: Comparison of the performance of all the eight algorithms
(RNSC, affinity propagation (AP), MCL, MCODE, CFinder, CMC, RRW and Clus-
terONE) on all the five unweighted datasets (the binarized versions of Collins, Krogan
core, Krogan extended, Gavin, and BioGRID) using the MIPS gold standard. Overlapping
algorithms are marked by an asterisk (*) below their columns.
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Supplementary Figure 3: Benchmark results of the tested algorithms on the SGD gold
standard. Colors correspond to the various algorithms (red = ClusterONE), various shades
of the same color denote the individual components of the composite score of the algorithm
(dark = fraction of matched complexes, medium = geometric accuracy, light = maximum
matching ratio). The numbers on the bars show the exact scores for each component of
the composite score. The total height of each column is the value of the composite score
for a given algorithm on a given dataset. Larger scores are better. Overlapping algorithms
are marked by an asterisk (*) below their columns.
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(a) Affinity propagation

Rsc3p Rsc2p

Taf14p

Rsc6p

Rsc8p

Sth1p

Rsc4p

Rsc58p
Npl6p

Snf5p

Snf11p

Swp82p

Snf6p

Swi3p

Arp9p

Snf12p Snf2p

Swi1p

Arp7p

Htl1p

Rsc1p
Rtt102p

Rsc30pSfh1p

Rsc9p

(b) RNSC

Rsc3p

Rsc2p

Taf14p

Rsc6p

Rsc8p

Sth1p

Rsc4p

Rsc58p

Npl6p

Snf5p

Snf11p

Swp82p

Snf6p

Swi3p

Arp9p

Snf12p

Snf2p

Swi1p

Arp7p

Htl1p

Rsc1p

Rtt102p

Rsc30p
Sfh1p

Rsc9p

Nfi1p

(c) MCL

Supplementary Figure 4: The RSC and SWI/SNF complexes as detected by the three
non-overlapping clustering algorithms studied in the main manuscript. Blue and green
nodes represent subunits of the RSC and SWI/SNF complexes, respectively; yellow nodes
belong to both complexes, white nodes belong to neither. Shaded areas represent the
clusters detected by the algorithms.
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(e) ClusterONE

Supplementary Figure 5: The RSC and SWI/SNF complexes as detected by the five
overlapping clustering algorithms studied in the main manuscript. Blue and green nodes
represent subunits of the RSC and SWI/SNF complexes, respectively; yellow nodes belong
to both complexes, white nodes belong to neither. Shaded areas represent the clusters
detected by the algorithms.
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Supplementary Figure 6: The DASH complex as detected by the eight algorithms
studied in the main manuscript. Red nodes represent subunits of the DASH complex in
MIPS; shaded areas represent the clusters detected by the algorithms. The color of the
shaded area is red if the cluster contains at least half of the proteins of the DASH complex.
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Supplementary Figure 7: Illustration of the greedy cohesive group detection process.
The group itself is denoted by a shaded background. Thick black edges are internal, thin
black edges are boundary edges, while thin gray dashed edges are completely external.
Vertices marked by a letter are incident on at least one boundary edge, therefore only
these vertices will be considered for addition or removal by the algorithm. The best choice
is to extend the group by vertex C as it would convert three boundary edges to internal
ones and would not add any additional boundary edges.
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Supplementary Figure 8: Illustration of the maximum matching ratio between a ref-
erence and a predicted complex set. R1 and R2 are members of the reference set, while
P1, P2 and P3 are three predicted complexes. An edge connects a reference complex and
a predicted complex if their overlap score is larger than zero. The maximum matching is
shown by the thick edges. Note that P2 was not matched to R1 since P1 provides a better
match with R1. The maximum matching ratio in this example is (0.8 + 0.75)/2 = 0.775.
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Supplementary Table 1: Co-localization and overrepresentation scores of the predicted
complexes for ClusterONE and MCL when ignoring IEA, ND and NAS evidence codes

Overrepresentation
Dataset Method Co-localization BP CC MF

Collins
ClusterONE 0.880 0.882 0.826 0.735
MCL 0.900 0.869 0.776 0.712

Krogan core
ClusterONE 0.775 0.670 0.525 0.499
MCL 0.746 0.580 0.473 0.443

Krogan extended
ClusterONE 0.771 0.675 0.551 0.526
MCL 0.682 0.493 0.383 0.419

Gavin
ClusterONE 0.883 0.918 0.827 0.733
MCL 0.812 0.676 0.632 0.510

BioGRID
ClusterONE 0.741 0.821 0.751 0.657
MCL 0.605 0.618 0.538 0.539

MIPS complexes 0.813 0.995 0.965 0.893

Nature Methods: doi:10.1038/nmeth.1938



Supplementary Table 2: Overrepresentation scores of the predicted complexes for Clus-
terONE and MCL when ignoring IEA, ND, NAS and IPI evidence codes

Overrepresentation
Dataset Method BP CC MF

Collins
ClusterONE 0.882 0.754 0.708
MCL 0.858 0.721 0.694

Krogan core
ClusterONE 0.658 0.477 0.482
MCL 0.570 0.437 0.423

Krogan extended
ClusterONE 0.667 0.508 0.505
MCL 0.493 0.349 0.397

Gavin
ClusterONE 0.913 0.769 0.638
MCL 0.668 0.591 0.494

BioGRID
ClusterONE 0.794 0.634 0.672
MCL 0.604 0.500 0.494

MIPS complexes 0.995 0.921 0.897
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Supplementary Table 3: Properties of the protein-protein interaction datasets used in
the experiments.

Collins Krogan Gavin BioGRID
core extended

Number of proteins 1,622 2,708 3,672 1,855 5,640
Number of interactions 9,074 7,123 14,317 7,669 59,748
Weighted yes yes yes yes no
Threshold top 9,074 0.273 0.101 5 N/A

Nature Methods: doi:10.1038/nmeth.1938



Supplementary Table 4: Properties of the gold standard datasets used in the experi-
ments.

MIPS SGD
Number of proteins 1,189 1,279
Number of complexes 203 323
Overlapping complex pairs 401 (2.0%) 296 (0.6%)
Proteins in ≥ 2 complexes 820 (69.0%) 332 (26.0%)

Nature Methods: doi:10.1038/nmeth.1938
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1 Assessing the quality of predicted complexes

1.1 Comparing predicted complexes with a gold standard

In the manuscript, we have used three independent quality measures to assess the similarity
between a set of predicted complexes and a set of reference complexes. The first measure
was the fraction of pairs between predicted and reference complexes with an overlap score
ω larger than 0.25. Recall that the overlap score between two protein sets A and B is
defined as follows [1]:

ω(A,B) =
|A ∩B|2

|A||B|
The threshold of 0.25 was chosen because it represents the case when the intersection is at
least half of the complex size if the two complexes being compared are equally large.
The second measure was the maximum matching ratio (MMR), which we introduced in
Online Methods. The measure is based on a maximal one-to-one mapping between pre-
dicted and reference complexes. See the Online Methods for a more precise description
and Section 1.2 in this Supplementary Discussion for the motivation for developing MMR.
The third measure we used was the geometric accuracy as introduced by Brohée and van
Helden [2], which is the geometric mean of two other measures, namely the clustering-
wise sensitivity (Sn) and the clustering-wise positive predictive value (PPV). Sn and PPV
are based on the confusion matrix T = [tij] of the complexes. Given n reference and m
predicted complexes, let tij denote the number of proteins that are found both in reference
complex i and predicted complex j, and let ni denote the number of proteins in reference
complex i. Sn and PPV are then defined as follows:
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Sn =

∑n
i=1 maxm

j=1 tij∑n
i=1 ni

PPV =

∑m
j=1 maxn

i=1 tij∑m
j=1

∑n
i=1 tij

Since the clustering-wise sensitivity can be inflated by putting every protein in the same
cluster, while the positive predictive value can be maximized by putting every protein in
its own cluster, it is necessary to balance the two measures by introducing the geometric
accuracy (Acc), which is simply the geometric mean of the clustering-wise sensitivity and
the positive predictive value:

Acc =
√

Sn× PPV

1.2 Motivation for the maximum matching ratio (MMR)

Our motivation for developing the MMR was that the positive predictive value (a compo-
nent of the accuracy score) tends to be lower if there are substantial overlaps between the
predicted complexes, and this puts overlapping clustering algorithms at a disadvantage.
In the next few paragraphs, we will elaborate on this statement and provide an example
which demonstrates this property of the geometric accuracy measure.

1.2.1 Caveats of the positive predictive value

The value of PPV can be misleading if some proteins in reference complex i appear in
either more than one predicted complex or in none of them. In this case, ni is not equal to
the sum of row i in the confusion matrix T. In general, ni may be larger, smaller or equal
to the sum of row i, which we will denote with ti∗ from now on.
Consider the case when the set of reference and predicted complexes is the same. In this
case, tii = ni for every i, but there may be other non-zero elements in T, as tij > 0 if
complex i and j overlap partially. However, these non-zero elements may never exceed tii,
meaning that maxm

j=1 tij = maxn
i=1 tij = ni in all cases.

The Sn and PPV measures are then as follows:

Sn =

∑n
i=1 ni∑n
i=1 ni

= 1

PPV =

∑n
i=1 ni∑n
i=1 ti∗

≤ 1

The consequence is that a perfect clustering algorithm that always returns the reference
complexes from the data may have a lower positive predictive value than a dummy algo-
rithm which places every protein in a separate cluster. In fact, assuming that we have k
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proteins, and protein j is a member of complex cj, the positive predictive value for such a
dummy algorithm would be:

PPV =
k∑k
j=1 cj

= 1

A concrete example is the set of MIPS complexes we used in our benchmarks. MIPS
complexes containing at least three and at most 100 proteins cover a total of 1189 unique
proteins, thus k = 1189 in the above example. However, the total size of such MIPS
complexes (which is also equal to

∑k
j=1 cj) is 2541, yielding a PPV of 1189/2541 = 0.468

for the dummy algorithm which places every protein in a separate cluster, compared to
the PPV of 0.3475 when comparing the MIPS complexes with themselves. Therefore, the
PPV scores of the algorithms should be interpreted with care.
Finally, we would like to point out a substantial difference between the basic assumptions
of the maximum matching ratio and the geometric accuracy. The geometric accuracy
measure explicitly penalizes predicted complexes that do not match any of the reference
complexes. However, gold standard sets of protein complexes are often incomplete [3].
As a consequence, predicted complexes not matching any known reference complexes may
still exhibit high functional similarity or be highly co-localized, and therefore they could
still be prospective candidates for further in-depth analysis. In other words, a predicted
complex that does not match a reference complex is not necessarily an undesired result,
and optimizing for the geometric accuracy measure might prevent us from detecting novel
complexes from a PPI dataset. The maximum matching ratio sidesteps this problem
by dividing the total weight of the maximum matching with the number of reference
complexes. However, it is of course advised to quantify the functional homogeneity of the
detected complexes with alternative methods to complement the maximum matching ratio,
similarly to the approach we have followed in the manuscript. Some of these alternative
methods are described later in Section 2.8.

1.2.2 Caveats of the clustering-wise separation

To solve some of the problems of the clustering-wise sensitivity and positive predictive value
measures, Brohée and van Helden [2] have also suggested the clustering-wise separation
measure as an alternative metric. In this section, we will discuss why the clustering-wise
separation measure is also not a suitable measure for our problem – the reasons are similar
to the ones given against the positive predictive value (PPV) measure.
The clustering-wise separation measure is defined as follows. First, let us define relative
frequencies of the confusion matrix with respect to the marginal row-wise or column-wise
sums as follows:

F r
ij =

tij∑m
j=1 tij

F c
ij =

tij∑n
i=1 tij

4
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The separation of predicted complex i and reference complex j is then given by:

Sepij = F r
ijF

c
ij

The complex-wise and the cluster-wise separation scores are then calculated for the whole
set of reference and predicted complexes as follows:

Sepco =

∑n
i=1

∑m
j=1 Sepij

m

Sepcl =

∑n
i=1

∑m
j=1 Sepij

n

The clustering-wise separation, i.e. the final quality score is then given as the geometric
mean of Sepco and Sepcl:

Sep =
√

SepcoSepcl

According to Brohée and van Helden [2],

”The maximal value Sepij = 1 indicates a perfect and exclusive correspondence
between complex j and cluster i: it indicates that the cluster contains all the
members of the complex and only them.”

This again presents a problem in cases when the gold standard and/or the set of predicted
complexes contains overlaps: calculating the clustering-wise separation of the MIPS com-
plexes with themselves yields a clustering-wise separation of 0.3260 only. On one hand,
the measure is correct since the MIPS complexes are not particularly well-separated from
each other; on the other hand, it gives a misleading result because the MIPS complexes
match themselves perfectly.
We also note that our maximum matching ratio measure (outlined in the Online Methods)
is designed in a very similar vein to the clustering-wise separation score as it also starts with
calculating a single quality score (the match score) for every reference-predicted complex
pair; on the other hand, it proceeds by finding a maximum matching between reference
and predicted complexes in a way that does not penalize overlaps explicitly.

2 Testing ClusterONE against other algorithms

2.1 General considerations

The standard procedure for evaluating the performance of a machine learning algorithm
starts by dividing the data into a training and a testing set. The parameters of the algo-
rithm are then tuned on the training set, and the optimal parameters are used to calculate
the final performance score of the algorithm on the testing set. However, this procedure
assumes that the input dataset can naturally be decomposed into problem instances such
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that 1) each instance is a complete input for the learning algorithm on its own and 2) each
instance is independent of the other ones. Unfortunately, neither of these assumptions hold
for graph clustering algorithms, especially in biological contexts where the input dataset
consists of a single biological network which cannot be easily decomposed. In fact, it is
reasonable to expect that removing a pre-defined fraction of edges from a network would
change its structural properties in a way that could affect the outcome of a clustering al-
gorithm substantially; in other words, removing edges from a network is similar to adding
noise to a feature vector in a standard machine learning algorithm rather than to putting
a set of problem instances aside in a testing set.
Evaluating the performance of clustering algorithms on graphs is therefore a tricky prob-
lem where we cannot turn to the well-established methodology of k-fold cross-validation.
Nevertheless, careful counter-measures can and should be taken to avoid the typical biases
in the evaluation of a novel method, in particular the over-optimization of algorithm pa-
rameters to a given dataset or a given quality score [4]. To this end, we have decided on
the following:

1. We have tested each of the algorithms on five different datasets: three high-throughput
experimental datasets [5, 6], a computationally derived network that integrates the
results of these studies [7], and a compendium of all known yeast protein-protein
interactions [8].

2. We have used more than one quality score to assess the performance of each algorithm:
the fraction of matched complexes with a given overlap score threshold (ω ≥ 0.25),
the geometric accuracy [2] and the maximum matching ratio that we have proposed.

3. We have also used two different gold standards: the MIPS compendium of protein
complexes [9] and a set derived from the Gene Ontology annotations of the Saccha-
romyces Genome Database [10] (Supplementary Data 2). Note that since the two
gold standards are not entirely consistent with respect to the membership of some
proteins in some complexes, we decided to test these two gold standards separately.

4. For each algorithm, except ClusterONE, the final results were obtained after having
optimized the algorithm parameters to yield the best possible results as measured
by the maximum matching ratio on the gold standard that was being used in the
benchmark (either MIPS or SGD). On the other hand, the results for ClusterONE
were obtained without tuning the parameters. Therefore, the scores of ClusterONE
represent its performance when the method is adapted to a wider problem domain
(i.e. detecting overlapping protein complexes from high-throughput experimental
PPI networks in general), while the scores of other algorithms measure their perfor-
mance when they are optimized to a specific dataset. It is thus rightly expected that
these latter scores are optimistic estimates.

Interestingly enough, we will see that there seems to be a clear separation between the
behaviour of overlapping and non-overlapping algorithms in our benchmarks: the optimal
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Supplementary Table 5: Characteristics of the various clustering algorithms studied in
this paper.

Algorithm Version Weighted Overlapping Reference
Affinity propagation Unknown (5 Dec 2007) yes no [11]
CFinder 2.0.5 noa yes [12, 13]
ClusterONE 0.93 yes yes this manuscript
CMC 2.0 yesb yes [14]
MCL 10-201 yes no [15, 16]
MCODE 1.31c no yes [1]
RNSC Unknown (2004) yes no [17]
RRW Unknown (8 Aug 2011) yes yes [18]

aCFinder has a weighted variant, but it turned out to be too slow for the protein complex detection
task; see Section 2.5.2.

bOnly in the initial stage; see Section 2.5.3.
cPatched to fix a bug with the density calculation; see Section 2.5.4

parameter values for non-overlapping algorithms such as affinity propagation, RNSC and
MCL seem to vary wildly between datasets, meaning that parameters that work well for a
given PPI network may not be suitable at all for a different dataset. On the other hand,
overlapping algorithms seem to be less affected by the exact values of their parameters
as long as they remain within a certain range. For ClusterONE, the default settings
outperformed all the alternative approaches (see Figure 1a in the main manuscript and
Supplementary Figure 3, Supplementary Table 7 and Supplementary Table 9
later in this document).

2.2 Common settings for all the algorithms

We compared the performance of ClusterONE to a representative set of other approaches:
MCL, MCODE, affinity propagation, RNSC, CFinder, CMC and RRW. Some of these al-
gorithms supported the use of edge weights (affinity propagation, MCL, RRW), and some
could handle overlapping clusterings (MCODE, CFinder, CMC, RRW). Supplementary
Table 5 shows a summary of the different algorithm characteristics and the version num-
bers of the software we have used to test them.
In order to run algorithms not supporting arbitrary edge weights (MCODE, RNSC, CMC
and CFinder) on weighted networks, these were first binarized using the threshold values
originally suggested by the authors of the datasets. Interactions with a weight smaller than
the proposed threshold were ignored; interactions with a weight larger than the proposed
threshold were kept. We have checked the suitability of these thresholds using the heuristic
proposed by Apeltsin et al [19].
Predicted complexes containing less than three proteins were excluded from the results
unless the authors of the original algorithm suggested different size limits. In such cases,
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the new size limits are always mentioned explicitly in the upcoming sections.

2.3 Implementation details

Our goal was to make the implementation of ClusterONE as efficient and deterministic as
possible. The key point in achieving efficiency was to recognize that one does not have to
evaluate every single protein in the network when looking for a candidate protein to add
to the cohesive subgroup being grown. This is achieved by maintaining two variables for
each protein i in the network (where Vt will denote the current cohesive subgroup in step
t):

1. The total weight of edges that connect protein i with members of Vt, denoted by win
i .

2. The total weight of edges that connect protein i with non-members of Vt, denoted
by wout

i .

We also maintain the so-called boundary set of Vt, which contains all the proteins with
at least one incident edge that connects the protein with a member of Vt. In step t, it is
enough to evaluate the boundary set of Vt and the members of Vt to find the protein whose
addition or removal yields the largest increase in cohesiveness. The new cohesiveness after
the addition of i can be calculated by using the current win and wbound of Vt, and win

i and
wout

i as follows:

f(Vt ∪ {i}) =
win(Vt) + win

i

win(Vt) + wout(Vt) + wout
i + p(|Vt|+ 1)

since

win(Vt ∪ {i}) = win(Vt) + win
i

wout(Vt ∪ {i}) = wout(Vt)− win
i + wout

i

Similar reasoning shows that for proteins already in Vt, the cohesiveness after their removal
is as follows:

f(Vt \ {i}) =
win(Vt)− win

i

win(Vt) + wout(Vt)− wout
i + p(|Vt| − 1)

win
i and wout

i then has to be updated for every protein adjacent to protein i in the network.
For sparse networks, this is significantly faster than calculating the cohesiveness scores
from scratch for every protein that is considered for addition or removal.
In rare cases, it may happen that the addition of more than one vertex or the removal
of more than one vertex would lead exactly to the same maximal increase in f(Vt). Our
reference implementation uses the following rules when resolving such ties:

1. If at least one addition and at least one removal would yield the same maximal
increase in f(Vt), only the additions are considered.
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2. If the addition of more than two vertices individually would result in the same max-
imal increase of the goal function, all such vertices are added at the same time.

3. If the removal of more than two vertices individually would result in the same max-
imal increase of the goal function, all such vertices are removed at the same time.

We have also tried several alternative resolution strategies used by other authors in algo-
rithms based on similar growth processes (e.g., [20, 21, 22, 23, 24]), and we found that the
exact rules of tie resolution do not affect the quality of the results substantially. We have
settled on the above strategy in order to make ClusterONE as deterministic as possible.
Finally, we would like to note that the source code of ClusterONE allows a developer to
replace various parts of the algorithm easily without affecting others. For instance, several
authors have proposed different kinds of quality functions for clusters: Lancichinetti et al
[22] proposed a resolution parameter µ that can be used to tune the granularity of clusters,
while Fortney et al [24] showed an example of how additional biological knowledge (in their
case, gene expression data) can be incorporated into a cohesiveness-like function. Both of
these goal functions can be used with the default growth process built into ClusterONE
by replacing the classes responsible for the calculation of the goal function. The HC-PIN
algorithm of Wang et al [23] uses a bottom-up iterative merging procedure, which stops
when a measure similar to cohesiveness falls below a given threshold; this could also easily
be implemented by modifying ClusterONE’s source code and replacing the class responsible
for the greedy growth process with a hierarchical merging procedure.

2.4 ClusterONE parameter settings

For ClusterONE, we did not tune the parameters to a particular dataset and we used the
default parameters of our implementation. These were: density threshold set to 0.3 for
weighted networks and to either 0.6 or 0.5 for unweighted networks (depending on the
network transitivity, see next subsection). The merging threshold was set to 0.8 and the
penalty value of each node was 2.

2.4.1 Transitivity and the BioGRID dataset

In our experiments, we tested the various algorithms on two types of unweighted datasets:
those obtained by binarizing the weighted networks (from Collins, Krogan and Gavin)
and BioGRID. Importantly these dataset were derived with different experimental tech-
niques: the Collins, Krogan and Gavin datasets include the results of TAP tagging ex-
periments only, while the BioGRID dataset contains a mixture of TAP tagging, Y2H and
low-throughput experimental results. This makes the BioGRID network structurally very
different, and particularly it shows an unexpectedly high fraction of star-like structures.
One way to quantify this, is to count the probability of triangles (i.e. triads of proteins all
interacting with each other) given three proteins connected by at least two edges. This
measure is known as transitivity (or also global clustering coefficient). In other words,
transitivity tells us the probability of finding a third edge among triplets of proteins where
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Supplementary Table 6: Transitivity scores of yeast two-hybrid, TAP tagging / mass
spectrometry and curated protein-protein interaction datasets.

Dataset Ref. Transitivity

Yeast two-hybrid
Ito et al, 2001 [25] 0.006
Uetz et al, 2000 [26] 0.040

TAP tagging / mass spectrometry
Krogan et al, 2006, extended [6] 0.100
Krogan et al, 2006, core [6] 0.195
Gavin et al, 2002 [27] 0.196
Gavin et al, 2006 [5] 0.560
Collins et al, 2007 [7] 0.619

Database curation
BioGRID [8] 0.066

at least two of the possible three connections exists. Therefore, transitivity has a low value
if the network contains many star-like structures. Supplementary Table 6 contains the
transitivity scores of several protein-protein interaction datasets, including the ones ana-
lyzed in this manuscript. Differences in structural properties of these networks are also
pointed out in [28, 29].
A low value of the transitivity implies a high presence of star-like structures in the interac-
tion network and these hamper the effectiveness of ClusterONE’s filtering based on density
(the last step of our algorithm). In these cases we recommend that use higher value for
the density threshold in order to discard trivial clusters. Given an unweighted network,
ClusterONE automatically tests the value of the transitivity and sets the density threshold
to either 0.5 or 0.6 (for the BioGRID dataset it uses 0.6).

2.5 Description of the other algorithms’ parameters

2.5.1 Affinity propagation

Each data point in the affinity propagation algorithm [11] has a parameter called preference,
which controls the likelihood of that data point being an exemplar (i.e. a representative
element of a cluster). It is a common practice to set the preference value equal for all
data points; in this case, one can think of the algorithm as having a single parameter only.
In our benchmarks, the optimal preference value was determined by sampling the interval
[-1; 1] uniformly with a step size of 0.1 and settling on the preference value that results
in the best quality score. In our benchmarks, we used the 64-bit Linux version of affinity
propagation, downloaded from http://www.psi.toronto.edu/index.php?q=affinity%

20propagation.
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2.5.2 CFinder

CFinder [12, 13] was one of the first overlapping clustering methods published in the liter-
ature. The original version of the algorithm operates on undirected, unweighted networks.
CFinder finds all k-cliques of the original network (where k is a tunable parameter of the
algorithm) and constructs a k-clique accessibility graph where two k-cliques are considered
accessible from each other if they share k − 1 vertices. The connected components of the
k-clique accessibility graph (whose vertices represent cliques in the original network) are
then used to derive the overlapping communities. A detailed description of the algorithm
is to be found in [12].
One may easily recognise that it is enough to enumerate the maximal cliques of the original
network that have at least k vertices instead of finding all k-cliques, as each subset of a
maximal clique is also a clique, therefore a maximal clique of size n will be mapped to
a connected subgraph consisting of

(
n
k

)
vertices in the k-clique accessibility graph. Such

subgraphs can be shrank into a single vertex that will represent the whole maximal clique
without affecting the connectivity properties of the k-clique accessibility graph.
Later on, a weighted extension of CFinder was proposed in [30]. This variant introduces a
second parameter I, acting as an intensity threshold for the detected cliques: the product of
the edge weights in a clique must exceed I in order to include that clique in the accessibility
graph. This is computationally more prohibitive than the unweighted variant as we have to
enumerate all k-subcliques of maximal cliques and check their intensities explicitly. In fact,
the reference implementation of CFinder (as downloaded from http://www.cfinder.org

on 8 Aug 2010) did not provide a result for the Collins dataset for a fairly conservative
setting of k = 4 and I = 0.8 in 48 hours, therefore we decided to proceed with the
unweighted variant in our benchmarks.

2.5.3 CMC

The CMC algorithm [14] is based on an iterative scoring algorithm that assesses the proba-
bility of whether two given proteins are in the same complex, followed by a maximal clique
finding process. Highly overlapping cliques are then merged in order to achieve the final set
of complexes. The algorithm is primarily governed by the overlap threshold which deter-
mines when should two cliques be considered highly overlapping, and the merge threshold,
which determines what to do with two highly overlapping cliques: they will be merged if
the part of the network between the two complexes is denser than the merge threshold,
otherwise the smaller clique will be discarded.
The range of both parameters is between zero and one, although low overlap thresholds do
not make sense as they would result in only a few giant complexes. Similarly, high overlap
thresholds would result in a very large number of redundant complexes, as almost none of
them would be allowed to merge with others. Therefore, the tested range of the overlap
threshold was limited to real values between 0.2 and 0.8, sampled with a step size of 0.1.
The merge threshold was tested on uniformly sampled real values between 0 and 1 with a
step size of 0.1.
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In our benchmarks, we used the original implementation of the CMC software (version 2),
downloaded from http://www1.comp.nus.edu.sg/~wongls/projects/complexprediction/

CMC-26may09/. According to the suggestions of the authors of the algorithm [14], a size
limit of 4 was used instead of the default size limit. N/A for the BioGRID dataset indicates
that the algorithm produced a prohibitively large number of clusters (more than 6000) for
all parameter settings we have tried.

2.5.4 MCODE

The MCODE algorithm [1] consists of three phases: vertex weighting, protein complex
formation and post-processing. The vertex weighting phase assigns a score to each vertex
measuring the “cliquishness” of the neighborhood of the vertex. Protein complexes are
then grown from each vertex, starting from the one with the highest weight. The depth
limit parameter controls how far the growth process is willing to proceed from the seed
vertex when considering other vertices to be added to the seed vertex in order to form
a protein complex. The vertex weight percentage controls how much difference is allowed
between the scores of the vertices within the same complex. Finally, there are two possible
post-processing operations: haircut, which iteratively removes vertices that are connected
by only a single edge to the rest of the complex, and fluffing, which tries to expand the
complex with other vertices if they connect to many vertices of the same complex. MCODE
is able to produce overlapping complexes in the fluffing phase, but our experiments have
shown that the algorithm performs better when fluffing is turned off.
We tried all the possible combinations of the following parameters:

• Depth limit: 3, 4, 5

• Vertex weight percentage: 10% to 50% in steps of 5%

• Haircut: on or off

• Fluffing: on or off

• Fluffing percentage: 0, 10% or 20%

At the time of the submission of this manuscript, the most recent version of the MCODE
Cytoscape plugin (version 1.31) calculated the complex densities and hence the complex
scores incorrectly, hence we used a patched version of the plugin that fixes this issue. The
complex score calculation in the patched version was exactly according to the original
publication [1].

2.5.5 MCL

The MCL algorithm [16] has a single parameter called inflation, which tunes the granularity
of the clustering. Larger inflation values result in smaller clusters, while smaller inflation
values generate only a few large clusters. The range of possible inflation values for the

12

Nature Methods: doi:10.1038/nmeth.1938



MCL algorithm (1.2 to 5.0) was sampled uniformly with a step size of 0.1. The optimal
inflation values for each dataset are as follows:
In our benchmarks, we used MCL version 10-201, downloaded from http://www.micans.

org/mcl.

2.5.6 RNSC

The RNSC algorithm [17] has a large number of tunable parameters, but according to the
benchmarks of Brohée et al [2], none of these parameters influence the overall quality of
the clusters substantially in the case of protein-protein interaction datasets. Following the
approach chosen by Brohée et al [2], we tried all the possible combinations of the following
parameter values:

• Shuffling diversification length: 3, 5, 9

• Diversification frequency: 10, 20, 50

• Number of experiments: 1, 3, 10

• Naive stopping tolerance: 10, 20, 50

• Scaled stopping tolerance: 1, 5, 15

• Tabu length: 1, 10, 50, 100

• Tabu tolerance: 1, 3, 5

The total number of parameter combinations tried was 2916. Since the RNSC algorithm is
randomized, each combination was tried 5 times for each dataset and the one resulting in
the best maximum matching ratio was kept. According to the suggestions of the authors
of the algorithm [17], a size limit of 4 was used.

2.5.7 RRW

The RRW algorithm [18] derives complexes from results of repeated restarted random
walks on the graph of protein-protein interactions. It requires one to specify the minimum
and maximum size of the clusters, the restart probability of the random walk at each
step, and two threshold parameters (the overlap threshold and the early cutoff). We note
that the authors recommended a maximum cluster size of 11 in their original publication.
Such a threshold obviously prevents RRW from accurately detecting complexes that are
larger than this size; however, preliminary experiments with maximum cluster sizes of 50,
100 and 150 indicated that the results obtained with these settings were in general worse
than using a more conservative maximum cluster size, while also taking substantially more
time (10–15 minutes for a single run, depending on the network size and the cluster size
threshold). Therefore, we left the maximum size at 11 and tuned the remaining parameters
by trying all possible combinations of the following values:
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• Restart probability: 0.5 to 0.9 in steps of 0.1

• Overlap threshold: 0.05 to 0.3 in steps of 0.05

• Early cutoff: 0.5 to 0.9 in steps of 0.1

2.6 The MIPS gold standard

2.6.1 Parameter settings for each algorithm

Affinity propagation

Collins [7] Krogan [6] Gavin [5] BioGRID [8]
core extended

Preference -0.9 0.35 0.4 -0.15 -0.5

CFinder

Collins [7] Krogan [6] Gavin [5] BioGRID [8]
core extended

k-clique template size 3 3 3 4 N/A

N/A for the BioGRID dataset indicates that even the unweighted CFinder implementation
did not give any result within 24 hours.

CMC

Collins [7] Krogan [6] Gavin [5] BioGRID [8]
core extended

Overlap threshold 0.7 0.7 0.7 0.7 N/A
Merge threshold 0.5 0.4 0.5 0.5 N/A

MCODE

Collins [7] Krogan [6] Gavin [5] BioGRID [8]
core extended

Depth limit 3 3 3 3 3
Vertex weight percentage 20% 20% 10% 10% 10%
Fluff complexes no no no no no
Fluff threshold N/A N/A N/A N/A N/A
Haircut complexes yes yes yes yes yes
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MCL

Collins [7] Krogan [6] Gavin [5] BioGRID [8]
core extended

Inflation 4.9 2.3 2.3 3.2 3.3

RNSC

Collins [7] Krogan [6] Gavin [5] BioGRID [8]
core extended

Shuffling diversification length 5 9 9 9 9
Diversification frequency 50 20 20 20 20
Number of experiments 3 3 3 3 3
Naive stopping tolerance 10 10 20 20 20
Scaled stopping tolerance 5 5 1 5 5
Tabu length 100 10 50 100 10
Tabu tolerance 1 3 1 5 1

RRW

Collins [7] Krogan [6] Gavin [5] BioGRID [8]
core extended

Restart probability 0.5 0.5 0.5 0.6 0.9
Overlap threshold 0.2 0.2 0.2 0.1 0.2
Early cutoff 0.5 0.6 0.7 0.6 0.6

2.6.2 Benchmark results

First we have tested all the algorithms mentioned above on the weighted Collins, Krogan
and Gavin datasets and on the unweighted BioGRID dataset (Supplementary Data 1).
Supplementary Table 7 contains the detailed benchmark results when the MIPS gold
standard dataset was used as a gold standard.

2.6.3 The effect of random matches

In this section, we provide estimates for the expected values of each quality score when
applied to randomized predicted complex sets. These estimates will then serve as a baseline
against which we can compare our actual, observed quality scores. Quality scores close
to the baseline would indicate cases when a particular algorithm managed to produce a
complex set that is not substantially better than a randomly created complex set.
In order to randomize a predicted complex set while maintaining the size distribution of
the clusters, we first concatenated these complexes into a list of proteins. This list was
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Supplementary Table 7: Benchmark results of various protein complex detection algo-
rithms on PPI datasets using the MIPS gold standard

Dataset Method #clusters #matched Sn PPV Accuracy Matching ratio

Collins MCL 183 88 0.587 0.490 0.536 0.399

MCODE 112 71 0.519 0.467 0.492 0.328

CMC 184 71 0.498 0.508 0.503 0.314

AP 152 76 0.459 0.503 0.480 0.352

ClusterONE 195 93 0.639 0.483 0.555 0.418

RNSC 94 73 0.516 0.482 0.499 0.309

RRW 190 80 0.396 0.503 0.446 0.375

CFinder 114 66 0.661 0.367 0.492 0.308

Krogan core MCL 376 81 0.450 0.428 0.439 0.271

MCODE 79 38 0.283 0.367 0.322 0.123

CMC 156 49 0.315 0.429 0.367 0.171

AP 222 54 0.272 0.437 0.345 0.174

ClusterONE 522 91 0.486 0.396 0.438 0.317

RNSC 87 54 0.321 0.458 0.383 0.175

RRW 329 68 0.296 0.436 0.359 0.246

CFinder 115 47 0.532 0.256 0.369 0.167

Krogan extended MCL 483 68 0.411 0.408 0.409 0.192

MCODE 64 23 0.199 0.369 0.271 0.071

CMC 421 58 0.295 0.383 0.336 0.176

AP 234 53 0.255 0.436 0.333 0.166

ClusterONE 530 90 0.443 0.402 0.422 0.282

RNSC 93 55 0.301 0.439 0.364 0.150

RRW 232 73 0.283 0.444 0.354 0.220

CFinder 121 34 0.611 0.162 0.315 0.106

Gavin MCL 253 79 0.508 0.497 0.502 0.331

MCODE 135 65 0.426 0.464 0.444 0.283

CMC 339 75 0.480 0.460 0.470 0.335

AP 246 75 0.396 0.490 0.441 0.335

ClusterONE 196 82 0.519 0.479 0.498 0.375

RNSC 138 72 0.484 0.478 0.481 0.317

RRW 234 76 0.395 0.498 0.444 0.346

CFinder 137 65 0.577 0.409 0.485 0.280

BioGRID MCL 338 37 0.346 0.350 0.348 0.083

MCODE 85 21 0.285 0.284 0.285 0.048

AP 586 46 0.227 0.373 0.291 0.096

ClusterONE 473 88 0.454 0.427 0.440 0.195

RNSC 209 79 0.399 0.441 0.419 0.192

RRW 253 75 0.276 0.429 0.344 0.178

Abbreviations: Sn = Clustering-wise sensitivity, PPV = Clustering-wise positive predictive value
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Supplementary Table 8: Expected values of the fraction of matched complexes (top),
the geometric accuracy (middle) and the maximum matching ratio (bottom) when a ran-
domized clustering is compared with the MIPS gold standard.

Frac.matched Collins Krogan core Krogan extd Gavin BioGRID
AP 0.0012 0.0012 0.0013 0.0022 0.0005

CFinder 0.0007 0.0013 0.0009 0.0004 –
ClusterONE 0.0014 0.0024 0.0017 0.0011 0.0012

CMC 0.0007 0.0019 0.0080 0.0014 –
MCL 0.0014 0.0009 0.0008 0.0016 0.0000

MCODE 0.0017 0.0007 0.0005 0.0010 0.0002
RNSC 0.0005 0.0012 0.0007 0.0011 0.0004
RRW 0.0026 0.0026 0.0019 0.0025 0.0010

Accuracy Collins Krogan core Krogan extd Gavin BioGRID
AP 0.1418 0.1454 0.1433 0.1583 0.1600

CFinder 0.1998 0.2258 0.2459 0.1511 –
ClusterONE 0.1590 0.1619 0.1540 0.1466 0.1677

CMC 0.1523 0.1212 0.1341 0.1591 –
MCL 0.1557 0.1636 0.1632 0.1606 0.2081

MCODE 0.1421 0.1169 0.1077 0.1418 0.1090
RNSC 0.1334 0.1110 0.1053 0.1411 0.1207
RRW 0.1530 0.1678 0.1469 0.1611 0.1319

MMR Collins Krogan core Krogan extd Gavin BioGRID
AP 0.0393 0.0374 0.0379 0.0503 0.0467

CFinder 0.0321 0.0274 0.0242 0.0315 –
ClusterONE 0.0408 0.0450 0.0410 0.0385 0.0460

CMC 0.0281 0.0221 0.0294 0.0415 –
MCL 0.0441 0.0487 0.0441 0.0474 0.0242

MCODE 0.0335 0.0201 0.0137 0.0362 0.0116
RNSC 0.0232 0.0167 0.0144 0.0316 0.0226
RRW 0.0508 0.0550 0.0408 0.0535 0.0348
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then shuffled using the Fisher–Yates shuffle [31], and divided into groups in a way that
preserved the sizes of the original complexes. The value of each quality score can then
be computed for this grouping. This procedure was repeated 100 times, to estimate the
expected value for each quality score. Since the Fisher–Yates shuffle chooses any possible
permutation of a list with equal probability, the resulting set of randomized complex sets
can be used to obtain an unbiased estimate for the expected value of any chosen quality
score (given the number of predicted complexes and their sizes, which are not varied).
We estimated these values for each algorithm on each dataset. Supplementary Table 8
shows the expected values of the three components of our composite score (i.e. the fraction
of matched complexes, the geometric accuracy and the maximum matching ratio). We can
conclude that the expected values are very close to zero in the case of the fraction of
matched complexes (< 0.01) and the maximum matching ratio (≤ 0.06) for all datasets
and all algorithms. The expected value of the geometric accuracy is higher, but nevertheless
still smaller than the values we have observed in our benchmark results (Supplementary
Table 7), which confirm that the correspondence between the predicted and the reference
complexes is not merely a result of chance.

2.6.4 An example: the RSC and SWI/SNF complexes

Supplementary Figure 4 and Supplementary Figure 5 illustrate how a particular
overlapping complex pair (the RSC and the SWI/SNF complexes) is found by the clus-
tering algorithms we have studied. Supplementary Figure 4 shows the results of the
non-overlapping algorithms, while Supplementary Figure 5 shows the results of the
overlapping algorithms. It can be seen that non-overlapping methods like affinity prop-
agation (AP), MCL and RNSC grouped the three overlapping subunits (Rtt102p, Arp9p
and Arp7p, shown in yellow) together with the RSC complex unequivocally. Among the
overlapping methods, ClusterONE, RRW and CMC managed to identify Arp9p and Arp7p
as overlaps between the two complexes, but RRW missed some of the other subunits of the
RSC complex, and CMC produced many false overlaps between the RSC complex and clus-
ters of other proteins that do not constitute valid reference complexes. CFinder grouped
both RSC and SWI/SNF together in a large cluster containing more than 80 proteins,
while MCODE grouped RSC together with the DNA-directed RNA polymerase II and III
complexes.

2.6.5 An example: the DASH complex

Supplementary Figure 6 shows how the various algorithms studied in this manuscript
identify the DASH complex, an important microtubule-binding component of the kineto-
chore [32] from the Krogan extended dataset. The complex is characterised in MIPS as
containing 9 proteins. ClusterONE is the only algorithm that is able to detect this complex
completely correctly. All other algorithms made various mistakes: 1) RRW, MCODE, and
RNSC were only able to detect part of the whole complex; 2) MCL and CFinder clus-
tered unrelated proteins into the DASH complex; more interestingly, the erroneous pro-
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teins added by the two algorithms are completely different; 3) CMC separated the DASH
complex into two overlapping complexes in a non-biologically relevant way; 4) Affinity
propagation not only separated the complex into two parts, but also added an erroneous
component – YMR075C-A, a dubious ORF unlikely to produce a protein product.

2.7 The SGD gold standard

2.7.1 Parameter settings for each algorithm

We have used the same parameter tuning method as the one outlined in Section 2.6.1. The
optimal parameter settings for each algorithm are provided in the next paragraphs.

Affinity propagation

Collins [7] Krogan [6] Gavin [5] BioGRID [8]
core extended

Preference 0.4 0.35 0.3 -0.6 -0.7

CFinder

Collins [7] Krogan [6] Gavin [5] BioGRID [8]
core extended

k-clique template size 3 3 4 4 N/A

N/A for the BioGRID dataset indicates that CFinder did not give any result within 24
hours.

CMC

Collins [7] Krogan [6] Gavin [5] BioGRID [8]
core extended

Overlap threshold 0.7 0.7 0.7 0.7 N/A
Merge threshold 0.5 0.4 0.3 0.5 N/A

N/A for the BioGRID dataset indicates that the algorithm produced a prohibitively large
number of clusters (more than 6000) for all parameter settings we have tried.

MCODE
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Collins [7] Krogan [6] Gavin [5] BioGRID [8]
core extended

Depth limit 3 3 3 3 3
Vertex weight percentage 20% 20% 10% 10% 10%
Fluff complexes no no no no no
Fluff threshold N/A N/A N/A N/A N/A
Haircut complexes yes yes yes yes yes

MCL

Collins [7] Krogan [6] Gavin [5] BioGRID [8]
core extended

Inflation 4.6 2.0 2.6 4.7 3.2

RNSC

Collins [7] Krogan [6] Gavin [5] BioGRID [8]
core extended

Shuffling diversification length 9 3 9 9 9
Diversification frequency 50 20 50 10 10
Number of experiments 3 3 10 3 1
Naive stopping tolerance 50 50 50 20 20
Scaled stopping tolerance 5 5 1 15 15
Tabu length 100 50 50 100 1
Tabu tolerance 1 1 1 1 1

RRW

Collins [7] Krogan [6] Gavin [5] BioGRID [8]
core extended

Restart probability 0.5 0.5 0.5 0.6 0.9
Overlap threshold 0.2 0.2 0.2 0.1 0.2
Early cutoff 0.5 0.6 0.7 0.6 0.6

2.7.2 Benchmark results

We have tested all the algorithms mentioned in the previous section on the weighted Collins,
Krogan and Gavin datasets and on the unweighted BioGRID dataset (Supplementary
Data 1). Supplementary Table 9 and Supplementary Figure 3 contain the detailed
benchmark results when the complexes derived from SGD were used as a gold standard.
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Supplementary Table 9: Detailed benchmark results of various protein complex detec-
tion algorithms on PPI datasets using the SGD complex set

Dataset Method #clusters #matched Sn PPV Accuracy Matching ratio

Collins MCL 181 112 0.797 0.657 0.723 0.518

MCODE 112 85 0.707 0.585 0.643 0.420

CMC 184 78 0.658 0.588 0.622 0.344

AP 151 95 0.645 0.666 0.656 0.450

ClusterONE 195 111 0.827 0.646 0.731 0.532

RNSC 95 86 0.698 0.638 0.667 0.388

RRW 190 101 0.614 0.702 0.656 0.494

CFinder 114 81 0.858 0.489 0.648 0.412

Krogan core MCL 367 105 0.686 0.592 0.637 0.354

MCODE 79 58 0.420 0.504 0.460 0.198

CMC 156 69 0.461 0.566 0.511 0.240

AP 216 81 0.409 0.627 0.506 0.295

ClusterONE 522 110 0.703 0.626 0.663 0.418

RNSC 88 78 0.482 0.604 0.540 0.256

RRW 264 100 0.465 0.676 0.561 0.361

CFinder 115 69 0.680 0.359 0.494 0.243

Krogan extended MCL 517 92 0.584 0.604 0.594 0.253

MCODE 64 39 0.326 0.450 0.383 0.107

CMC 351 78 0.484 0.567 0.524 0.252

AP 266 97 0.415 0.637 0.514 0.285

ClusterONE 530 111 0.635 0.620 0.628 0.364

RNSC 97 78 0.471 0.610 0.536 0.236

RRW 232 101 0.433 0.645 0.529 0.311

CFinder 88 49 0.550 0.401 0.470 0.155

Gavin MCL 253 96 0.697 0.681 0.689 0.438

MCODE 135 74 0.612 0.607 0.609 0.360

CMC 339 95 0.710 0.580 0.642 0.444

AP 239 99 0.642 0.671 0.656 0.437

ClusterONE 196 101 0.783 0.637 0.706 0.476

RNSC 143 91 0.731 0.658 0.694 0.425

RRW 237 97 0.636 0.699 0.667 0.471

CFinder 137 78 0.817 0.545 0.668 0.369

BioGRID MCL 335 70 0.447 0.474 0.460 0.144

MCODE 85 32 0.400 0.386 0.393 0.065

AP 606 64 0.361 0.527 0.436 0.136

ClusterONE 481 129 0.699 0.573 0.633 0.265

RNSC 220 117 0.611 0.610 0.610 0.277

RRW 270 113 0.467 0.611 0.534 0.263

Abbreviations: Sn = Clustering-wise sensitivity, PPV = Clustering-wise positive predictive value
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Supplementary Table 10: General properties of the clusterings generated by Clus-
terONE.

Collins Krogan core Krogan extd Gavin BioGRID

General statistics
Clusters 195 522 530 196 473
Overlapping cluster pairs 97 0.5% 986 0.7% 924 0.6% 168 0.8% 434 0.3%
Proteins covered 1295 1876 1878 1095 2580
Proteins in ≥ 2 clusters 222 17.1% 603 32.1% 661 35.2% 233 21.2% 721 27.9%

Overlap size distribution between cluster pairs
1 29 29.9% 325 32.9% 279 30.1% 59 35.1% 250 57.6%
2 15 15.4% 108 10.9% 128 13.8% 31 18.4% 49 11.2%
3 18 18.5% 233 23.6% 206 22.2% 21 12.5% 40 9.2%
4 14 14.4% 103 10.4% 112 12.1% 12 7.1% 27 6.2%
5 or larger 21 21.6% 217 22.0% 199 21.5% 45 26.7% 68 15.6%

2.8 Biological relevance of the clusters generated by ClusterONE

To assess the biological relevance of the clusters generated by ClusterONE, we have first
calculated some general statistics for the clusterings generated by ClusterONE and com-
pared them with the properties of the MIPS and SGD gold standards (Supplementary
Table 10, 11). As for the number of complexes, the results obtained from the Collins and
Gavin datasets are closer to the actual number of MIPS complexes, while the results from
the Krogan datasets and BioGRID seem to contain a large number of extra clusters. The
fraction of overlapping cluster pairs is close to that observed in the SGD gold standard
and slightly lower than that of the MIPS gold standard, which may be explained by the
fact that some of the MIPS categories are not real protein complexes but groups of related
complexes. The same applies to the fraction of proteins contained in at least two clusters.
In almost all cases, the generated clusters cover more proteins than the corresponding gold
standards.
Owing to the fact that gold standard protein complex sets are incomplete [3], a predicted
complex that does not match any of the reference complexes may belong to a valid but
previously uncharacterized complex as well. To this end, the comparison measures outlined
in Section 1.1 should be complemented with scores that assess the biological relevance of
predicted complexes based on the functional homogeneity or the co-localization of the
constituent proteins instead of relying on a pre-defined gold standard. This is motivated
by the fact that a protein complex can be formed only when its constituents are to be
found in the same cellular compartment [33], and also that protein complexes tend to be
responsible for a given biological function or molecular process.
The co-localization score [34] quantifies the extent to which proteins in a protein complex
or a set of protein complexes belong to the same cellular compartment, given a pre-existing
classification of individual proteins into localization categories. The co-localization score
of a single complex is simply the maximum fraction of proteins in the complex which are
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Supplementary Table 11: General properties of the gold standard protein complexes.

MIPS SGD

General statistics
Complexes 203 323
Overlapping complex pairs 401 2.0% 296 0.6%
Proteins covered 1189 1279
Proteins in ≥ 2 complexes 820 69.0% 332 26.0%

Overlap size distribution between complex pairs
1 89 22.2% 159 53.7%
2 33 8.2% 46 15.5%
3 63 15.7% 39 13.2%
4 37 9.2% 20 6.8%
5 or larger 179 44.6% 32 10.8%

found at the same localization. The co-localization score of a set of complexes is the mean
co-localization score of all complexes in the set, weighted by the sizes of the complexes. In
our benchmarks, we have used the localization classification of Huh et al [35].
The co-localization measure is suitable for flat (i.e. non-hierarchical) localization annota-
tions, but it does not cater for homogeneity in biological processes or molecular functions,
which are usually described in terms of a hierarchical classification scheme like the Gene
Ontology. For the Gene Ontology annotations, we conducted an overrepresentation analy-
sis of the annotations on each predicted complex as follows, following the method of Zhang
et al [36].
Let M denote the total number of proteins in the original PPI network, and for a given
predicted complex and an annotation term X, let m and K denote the number of proteins
in the predicted complex and in the category, respectively. Furthermore, let us assume that
k out of the m proteins in the predicted complex are annotated by X. The probability of
observing k or more proteins annotated by X in a set of size m by pure chance is then
given by:

P =
m∑
i=k

(
M−K
m−i

)(
K
i

)(
M
m

)
Category X is then said to be enriched in the predicted complex at significance level p
if P < p. The number of predicted complexes with at least one enriched annotation
at significance level 0.05 divided by the total number of predicted complexes yields the
overrepresentation score of the predicted complex set. Note that multiple hypothesis testing
is performed to determine whether a predicted complex contains an enriched category or
not, therefore the significance levels of individual tests have to be adjusted according to
the Benjamini-Hochberg method [37] in order to control the false discovery rate (FDR)
and keep the overall significance level of the test at 0.05. Gene Ontology annotations with
IEA, ND and NAS evidence codes (“Inferred from electronic annotation”, “No biological
data available” and “Non-traceable author statement”, respectively) were ignored. Since
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one may argue that using GO annotations with evidence code IPI (“Inferred from physical
interaction”) presents a case of circular reasoning as the algorithm also uses interaction
data to infer the complexes, we have also repeated the overrepresentation analysis while
ignoring annotations supported only by an IPI evidence code as well.
The co-localization and overrepresentation analysis results (Supplementary Tables 1–
2) also confirm that the clusters generated by ClusterONE are biologically relevant. The
tables contain the scores of MCL-derived complexes as well for comparison. ClusterONE
consistently produces higher overrepresentation scores across all aspects of the GO tree
than MCL both with and without the IPI annotations, and it also achieves a higher co-
localization score for all except the Collins dataset. We notice that the overrepresentation
scores were lower for both algorithms across all three GO categories when IPI evidence
codes were ignored; part of this effect may be attributed to the fact that less data was
available for the overrepresentation analysis.

3 Discussion on the importance of weights in protein

complex detection

A reasonable argument against using the weights in protein-protein interaction networks is
their unreliability: the weights themselves are usually calculated using complicated machine
learning approaches that operate on the original noisy experimental datasets. This is one
of the reasons why most analysis aimed at detecting complexes from PPI networks have
used unweighted datasets so far. However, here we argue that, altough the value of a
single weight can be highly unreliable, network weights, taken globally, can improve the
detection of protein complexes. Supplementary Figure 1 shows a comparison of the
performance of those algorithms that can handle weights (affinity propagation, MCL, RRW
and ClusterONE) on the weighted datasets (Collins, Krogan core, Krogan extended, Gavin)
and on their unweighted variants (obtained by thresholding the weighted datasets using
thresholds indicated in the respective dataset publications). We re-tuned the parameters
of affinity propagation, MCL and RRW for these unweighted datasets. We can see that,
with the exception of RRW on the Krogan core dataset, the use of weights improves the
performance of all the algorithms.
This leads us to another question on whether the performance of ClusterONE is better
only thanks to its ability to take weights into account, or it is also due to a fundamentally
different underlying algorithm. To address this question, Supplementary Figure 2 shows
the performance of all the eight algorithms on all the unweighted datasets (again, the
unweighted variants of the weighted datasets were obtained by thresholding the weighted
datasets using thresholds indicated in the respective dataset publications). We can see
that ClusterONE outperforms all its competitors. Only on the Gavin dataset, CMC and
RRW exhibit a performance close to the one of ClusterONE.

24

Nature Methods: doi:10.1038/nmeth.1938



4 A brief summary of how PPI weights were gener-

ated from experiments

4.1 Deriving the weights for the Gavin et al dataset

In the paper of Gavin et al [5], the weights of the interactions were defined by using the
so-called socio-affinity index introduced in [5] that is based on the log-odds of the number
of times two proteins were observed together in a purification, relative to the expected
frequency of such a co-occurrence based on the number of times the proteins appeared in
purifications. In other words, pairs of proteins with high socio-affinity indices were seen
together in a purification more frequently than what one would have expected by random
chance.
Formally, let ni,j|i=bait be the number of times that protein i as a tagged bait retrieved
protein j as a prey in a purification, let fbait

i be the fraction of purifications in which
protein i was bait, fprey

j be the fraction of all retrieved preys that were protein j, nbait the
total number of purifications (i.e. baits) and nprey

i=bait the number of preys retrieved with
protein i as a bait. Furthermore, let nprey

i,j be the number of times that proteins i and j were
seen together in a purification with baits different from i and j, and nprey be the number
of preys observed with a particular bait, excluding the bait itself. The socio-affinity index
is then defined as a sum of three log-odds: Si,j|i=bait (the log-odds of protein i as bait
retrieving protein j as prey, assuming the spoke model), Si,j|j=bait (the log-odds of protein
j as bait retrieving protein i as prey, assuming the spoke model) and Mi,j (the log-odds
of protein i and j appearing together in a purification where neither i nor j was bait,
assuming the matrix model). These are defined as follows:

Si,j|i=bait = log

(
ni,j|i=bait

fbait
i nbaitfbait

j nprey
i=bait

)

Mi,j = log

(
nprey
i,j

fprey
i fprey

j

∑
all baits nprey(nprey − 1)/2

)
The socio-affinity index Ai,j of proteins i and j is then simply

Ai,j = Si,j|i=bait + Si,j|j=bait +Mi,j

Gavin et al [5] argued that “[g]enerally, pairs with socio-affinity indices below 5 should
be considered with caution”. To this end, we have considered only those protein-protein
interactions in the Gavin dataset that had a socio-affinity index above 5, and then divided
all the socio-affinity indices with the maximum socio-affinity index encountered in the
dataset to constrain the weights between zero and one.

4.2 Deriving the weights for the Krogan et al datasets

Krogan et al [6] have used MALDI-TOF mass spectrometry and LC-MS/MS to iden-
tify protein-protein interactions, based on the observation that either mass spectrometry
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method often fails to identify a protein, and the usage of two independent methods can
increase the coverage and confidence of the obtained interactome. The results of the two
methods were combined by supervised machine learning methods with two rounds of learn-
ing, using hand-curated protein complexes in the MIPS reference database [9] as a gold
standard dataset.
In the first round of learning, Krogan et al have tested Bayesian inference networks and 28
different kinds of decision trees, eventually settling on three methods: Bayesian networks
and C4.5-based and boosted decision stumps. The output of these three methods were
then used as the input for a second round of learning where the stacked generalization
algorithm [38] was used with a logistic regression learner. The output of the stacked
generalization algorithm (i.e. a probability value between 0 and 1) was then thresholded
at two different levels to obtain the core and extended datasets. The Krogan core dataset
included all interactions with posterior probability higher than 0.273, while the extended
dataset included all interactions with posterior probability higher than 0.101. The posterior
probability scores were attached as weights to the interactions when the datasets were
analyzed by the clustering methods in this manuscript. The authors have also noted that
the interaction probabilities are likely to be underestimated since the complexes from MIPS
gold standard do not include interactions between proteins in different complexes.

4.3 Deriving the weights for the Collins et al dataset

Collins et al [7] have combined the experimentally derived PPI networks of Krogan et al
[6] and Gavin et al [5] by re-analyzing the raw primary affinity purification data of these
experiments using a novel scoring technique called purification enrichment (PE). The PE
scores were motivated by the probabilistic socio-affinity scoring framework of Gavin et al
[5] but also take into account negative evidence (i.e. pairs of proteins where one of them
fails to appear as a prey when the other one is used as a bait).
Similarly to the socio-affinity index, the PE score also consists of three components: Sij

(the sum of direct bait-prey evidence in favor of an interaction between protein i as bait
and protein j as prey), Sji (the sum of direct bait-prey evidence when protein j is bait
and protein i is prey) and Mij (the sum of indirect prey-prey evidence when proteins i
and j have a common bait in some purification). The Sij and Sji components account for
evidence under the spoke model of interactions, while Mij accounts for the matrix model.
Both Sij and Mij are defined as the sum of log-evidence terms as follows:

Sij =
∑
k

sijk Mij =
∑
l

mijl

where k iterates over the purifications where protein i was used as a bait, and l iterates
over the purifications where proteins i and j were simultaneously observed as preys.
The formulation of both sijk and mijl follows the general scheme of log-evidence, i.e.

Evidence(observation) = log10
P (observation|true PPI)
P (observation|false PPI)

. For the sijk terms, the exact form is
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as follows:

sijk =

{
log10

r+(1−r)pijk
pijk

if protein j is a prey in purification k using bait i

log10(1− r) otherwise

where r is the probability that a true association will be preserved and detected in a
purification experiment and pijk is the probability that a bait-prey pair will be observed for
nonspecific reasons. r was estimated using the observed frequency of successful purifications
over a set of very confident interactions (the intersection of MIPS small scale experiments
and MIPS complexes) and turned out to be 0.51 for the Krogan and 0.62 for the Gavin
dataset. pijk was also estimated from the MIPS complexes using a Poissonian model and
the observed number of preys in purification k with bait i, the number of times protein i
was used as a bait, and the estimate of the non-specific frequency of occurrence of prey j
in the dataset.
For the mijk terms, the general form of the formula is similar:

mijk = log10

r + (1− r)p′ijk
p′ijk

where p′ijk is an estimate of the probability that proteins i and j occur nonspecifically as
preys in the same purification at least once in the dataset. p′ijk was again estimated using
a Poissonian model.
PE scores were then calculated individually for the Krogan and Gavin datasets using the
raw primary purification results. The final PE score was combined from the individual PE
scores as follows:

PEcombined
ij = 0.5× PEKrogan

ij + PEGavin
ij

where the 0.5 multiplier for the Krogan PE scores accounts for the redundancy in the
Krogan et al dataset due to the two independent mass spectrometry methods used (LC-
MS/MS and MALDI-TOF).
Finally, the PE scores were smoothed and mapped to the range 0-1 using the combination
of monotonic LOESS regression [39] and the pool adjacent violators algorithm [40]. Scores
below 0.05 were set to zero for computational efficiency, and a subset of reliable interactions
was established by taking 9074 interactions with the highest PE scores. The exact score
threshold was selected based on the true positive to true negative rate evaluated on the
MIPS small scale experiments.
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